Age-related differences in agility are related to both muscle strength and corticospinal tract function.

敏捷性的年龄差异与肌肉力量和皮质脊髓束功能均有关

阅读:4
作者:MacKenzie Evan G, Bray Nick W, Raza Syed Z, Newell Caitlin J, Murphy Hannah M, Ploughman Michelle
Agility is essential for "healthy" aging, but neuromuscular contributions to age-related differences in agility are not entirely understood. We recruited healthy (n = 32) non-athletes (30-84 years) to determine: (1) if aging is associated with agility and (2) whether muscle strength or corticospinal tract function predicts agility. We assessed muscle strength via a validated knee extension test, corticospinal tract function via transcranial magnetic stimulation, and agility via spatiotemporal values (i.e., leg length-adjusted hop length and hop length variability) collected during a novel propulsive bipedal hopping (agility) task on an electronic walkway. Pearson correlation revealed aging is associated with leg length-adjusted hop length (r = -0.671, p < 0.001) and hop length variability (r = 0.423, p = 0.016). Further, leg length-adjusted hop length and hop length variability correlated with quadriceps strength (r = 0.581, p < 0.001; r = -0.364, p = 0.048) and corticospinal tract function (r = -0.384, p = 0.039; r = 0.478, p = 0.007). However, hierarchical regressions indicated that, when controlling for sex, muscle strength only predicts leg length-adjusted hop length (R(2) = 0.345, p = 0.002), whereas corticospinal tract function only predicts hop length variability (R(2) = 0.239, p = 0.014). Therefore, weaker quadriceps decrease the distance hopped, and deteriorating corticospinal tract function increases variability in hop length.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。