DDParcel: Deep Learning Anatomical Brain Parcellation From Diffusion MRI.

DDParcel:基于扩散磁共振成像的深度学习解剖脑区划分

阅读:5
作者:Zhang Fan, Cho Kang Ik Kevin, Seitz-Holland Johanna, Ning Lipeng, Legarreta Jon Haitz, Rathi Yogesh, Westin Carl-Fredrik, O'Donnell Lauren J, Pasternak Ofer
Parcellation of anatomically segregated cortical and subcortical brain regions is required in diffusion MRI (dMRI) analysis for region-specific quantification and better anatomical specificity of tractography. Most current dMRI parcellation approaches compute the parcellation from anatomical MRI (T1- or T2-weighted) data, using tools such as FreeSurfer or CAT12, and then register it to the diffusion space. However, the registration is challenging due to image distortions and low resolution of dMRI data, often resulting in mislabeling in the derived brain parcellation. Furthermore, these approaches are not applicable when anatomical MRI data is unavailable. As an alternative we developed the Deep Diffusion Parcellation (DDParcel), a deep learning method for fast and accurate parcellation of brain anatomical regions directly from dMRI data. The input to DDParcel are dMRI parameter maps and the output are labels for 101 anatomical regions corresponding to the FreeSurfer Desikan-Killiany (DK) parcellation. A multi-level fusion network leverages complementary information in the different input maps, at three network levels: input, intermediate layer, and output. DDParcel learns the registration of diffusion features to anatomical MRI from the high-quality Human Connectome Project data. Then, to predict brain parcellation for a new subject, the DDParcel network no longer requires anatomical MRI data but only the dMRI data. Comparing DDParcel's parcellation with T1w-based parcellation shows higher test-retest reproducibility and a higher regional homogeneity, while requiring much less computational time. Generalizability is demonstrated on a range of populations and dMRI acquisition protocols. Utility of DDParcel's parcellation is demonstrated on tractography analysis for fiber tract identification.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。