Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy.

吉非替尼治疗的 EGFR 突变肺癌细胞产生的外泌体通过上调自噬改变顺铂敏感性

阅读:3
作者:Li Xiao-Qiu, Liu Jia-Tao, Fan Lu-Lu, Liu Yu, Cheng Liang, Wang Fang, Yu Han-Qing, Gao Jian, Wei Wei, Wang Hua, Sun Guo-Ping
Several clinical trials indicate that concurrent administration of tyrosine kinase inhibitors (TKIs, such as gefitinib or erlotinib) with chemotherapy agents fails to improve overall survival in advanced non-small cell lung cancer (NSCLC) patients. However, the precise mechanisms underlying the antagonistic effects remain unclear. In the present study, we investigated the role of exosomes in the antagonistic effects of concurrent administration of chemotherapy and TKIs. Exosomes derived from gefitinib-treated PC9 cells (Exo-GF) decreased the antitumor effects of cisplatin, while exosomes derived from cisplatin-treated PC9 cells (Exo-DDP) did not significantly affect the antitumor effects of gefitinib. Additionally, inhibition of exosome secretion by GW4869 resulted in a modest synergistic effect when cisplatin and gefitinib were co-administered. Furthermore, Exo-GF co-incubation with cisplatin increased autophagic activity and reduced apoptosis, as demonstrated by an upregulation of LC3-II and Bcl-2 protein levels and downregulation of p62 and Bax protein levels. Thus, the antagonistic effects of gefitinib and cisplatin were mainly attributed to Exo-GF, which resulted in upregulated autophagy and increased cisplatin resistance. These results suggest that inhibition of exosome secretion may be a helpful strategy to overcome the antagonistic effects when TKIs and chemotherapeutic agents are co-administered. Before administering chemotherapy, introducing a washout period to completely eliminate TKI-related exosomes, may be a better procedure for administering chemotherapy and TKIs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。