In this paper, we introduce an innovative multivariable data fusion strategy for adaptive steady-state detection, specifically tailored for the alumina evaporation process. This approach is designed to counteract the production instabilities that often arise from frequent alterations in production conditions. At the core of our strategy is the application of an adaptive denoising algorithm based on the Gaussian filter, which adeptly eliminates erroneous data from selected variables without compromising the fidelity of the original signal. Subsequently, we implement a multivariable R-test methodology, integrated with the adaptive Gaussian filter, to conduct a thorough and precise steady-state detection via data fusion. The efficiency of this method is rigorously validated using actual data from industrial processes.Our findings reveal that this strategy markedly enhances the stability and efficiency (by 10%) of the alumina evaporation process, thereby offering a substantial contribution to the field. Moreover, the versatility of this approach suggests its potential applicability in a wide range of industrial settings, where similar production challenges prevail. This study not only advances the domain of process control but also underscores the significance of adaptive strategies in managing complex, variable-driven industrial operations.
Steady-state detection of evaporation process based on multivariate data fusion.
基于多元数据融合的蒸发过程稳态检测
阅读:11
作者:Qian Xiaoshan, Xu Lisha, Cui Xingli
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Sep 6; 19(9):e0309652 |
| doi: | 10.1371/journal.pone.0309652 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
