Steady-state detection of evaporation process based on multivariate data fusion.

基于多元数据融合的蒸发过程稳态检测

阅读:4
作者:Qian Xiaoshan, Xu Lisha, Cui Xingli
In this paper, we introduce an innovative multivariable data fusion strategy for adaptive steady-state detection, specifically tailored for the alumina evaporation process. This approach is designed to counteract the production instabilities that often arise from frequent alterations in production conditions. At the core of our strategy is the application of an adaptive denoising algorithm based on the Gaussian filter, which adeptly eliminates erroneous data from selected variables without compromising the fidelity of the original signal. Subsequently, we implement a multivariable R-test methodology, integrated with the adaptive Gaussian filter, to conduct a thorough and precise steady-state detection via data fusion. The efficiency of this method is rigorously validated using actual data from industrial processes.Our findings reveal that this strategy markedly enhances the stability and efficiency (by 10%) of the alumina evaporation process, thereby offering a substantial contribution to the field. Moreover, the versatility of this approach suggests its potential applicability in a wide range of industrial settings, where similar production challenges prevail. This study not only advances the domain of process control but also underscores the significance of adaptive strategies in managing complex, variable-driven industrial operations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。