Chitosan-grafted thymol (CST) coated on gold nanoparticles has been synthesized and characterized for the design of antimicrobial materials. CST was synthesized via adapting the Mannich reaction, and it acted as the capping agent for the synthesis of gold nanoparticles (AuNPs). The grafting of thymol onto the side chain of chitosan has provided a degree of substitution value (%DS(NMR)) of 10.0%, calculated by nuclear magnetic resonance spectroscopy. UV-visible spectrometry and elemental analysis were used to confirm the successful synthesis of CST through adapting the Mannich reaction. The appropriate concentration of CST for AuNP synthesis was found to be 0.020%w/v. A red-wine colloidal AuNP solution of 2.41-3.30 nM particle size exhibits a strong surface plasmon resonance at 502 nm, which shows negative charges at pH = 9 of -36.37 mV. This result evidenced that the AuNPs showed electrostatic repulsion and CST played a role as a capping agent to provide a good dispersion and stability state. CST coated on the AuNP surface was successfully utilized for the control of cariogenic bacteria in the oral cavity. The results obtained from this study show that the tuning of the capping agent used in the synthesis step strongly influences the latter antimicrobial activity of the nanoparticles against Streptococcus mutans ATCC 25175 and Streptococcus sobrinus ATCC 33402 activity, with an inhibition zone of 15.90 and 14.25 mm, respectively. The average minimum inhibitory concentration values against S. mutans ATCC 25175 and S. sobrinus ATCC 33402 were found to be 25 and 100 mg/L, respectively, whereas the minimum bactericidal concentration values were 100 and 200 mg/L, respectively.
New Chitosan-Grafted Thymol Coated on Gold Nanoparticles for Control of Cariogenic Bacteria in the Oral Cavity.
新型壳聚糖接枝百里酚包覆金纳米粒子用于控制口腔致龋菌
阅读:5
作者:Chittratan Pakawat, Chalitangkoon Jongjit, Wongsariya Karn, Mathaweesansurn Arjnarong, Detsri Ekarat, Monvisade Pathavuth
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2022 | 起止号: | 2022 Jul 19; 7(30):26582-26590 |
| doi: | 10.1021/acsomega.2c02776 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
