AP-2alpha induces epigenetic silencing of tumor suppressive genes and microsatellite instability in head and neck squamous cell carcinoma

AP-2alpha 诱导头颈部鳞状细胞癌中肿瘤抑制基因的表观遗传沉默和微卫星不稳定性

阅读:12
作者:Kristi L Bennett, Todd Romigh, Charis Eng

Background

Activator protein 2 alpha (AP-2alpha) is involved in a variety of physiological processes. Increased AP-2alpha expression correlates with progression in various squamous cell carcinomas, and a recent publication found AP-2alpha to be overexpressed in approximately 70% of Head and Neck Squamous Cell Carcinoma (HNSCC) patient samples. It was found to repress transcription of the tumor suppressor gene C/CAAT Enhancer Binding Protein alpha (C/EBPalpha), and its binding site correlated with upstream methylation of the C/EBPalpha promoter. Therefore, we investigated the potential for AP-2alpha to target methylation to additional genes that would be relevant to HNSCC pathogenesis. Principal findings: Stable downregulation of AP-2alpha stable by shRNA in HNSCC cell lines correlated with decreased methylation of its target genes' regulatory regions. Furthermore, methylation of MLH1 in HNSCC with and without AP-2alpha downregulation revealed a correlation with microsatellite instability (MSI). ChIP analysis was used to confirm binding of AP-2alpha and HDAC1/2 to the targets. The effects of HDAC inhibition was assessed using Trichostatin A in a HNSCC cell line, which revealed that AP-2alpha targets methylation through HDAC recruitment. Conclusions: These findings are significant because they suggest AP-2alpha plays a role not only in epigenetic silencing, but also in genomic instability. This intensifies the potential level of regulation AP-2alpha has through transcriptional regulation. Furthermore, these findings have the potential to revolutionize the field of HNSCC therapy, and more generally the field of epigenetic therapy, by targeting a single gene that is involved in the malignant transformation via disrupting DNA repair and cell cycle control.

Conclusions

These findings are significant because they suggest AP-2alpha plays a role not only in epigenetic silencing, but also in genomic instability. This intensifies the potential level of regulation AP-2alpha has through transcriptional regulation. Furthermore, these findings have the potential to revolutionize the field of HNSCC therapy, and more generally the field of epigenetic therapy, by targeting a single gene that is involved in the malignant transformation via disrupting DNA repair and cell cycle control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。