T-Type calcium channels shape neuronal excitability driving burst firing, plasticity, and neuronal oscillations that influence circuit activity. The three biophysically distinct T-type channel subtypes (Cav3.1, Cav3.2, Cav3.3) are differentially expressed in the brain, contributing to divergent physiological processes. Cav3.2 channels are highly expressed in the dentate gyrus (DG) of the hippocampus, and mice lacking Cav3.2 [knock-out (KO)] exhibit impairments in hippocampal dependent learning and memory tasks, as well as attenuated development of pilocarpine induced epilepsy. Owing to neurogenesis, granule cells (GCs) are continuously added to the DG, generating a heterogeneous population of maturational stages with distinct excitability. While initial studies identified the role of Cav3.2 in mature GC burst firing, its functional relevance in the intrinsic excitability of different GC subpopulations has not yet been examined. In this study, we used juvenile Cav3.2 KO mice to examine the contributions of Cav3.2 channels to GC excitability at three different stages of maturation. We recorded from cells throughout the GC layer using their electrophysiological and morphological features to allocate GCs into immature, intermediate, and mature groups. In immature GCs, loss of Cav3.2 channels reduced the proportion of cells that fired low-threshold calcium spikes. Conversely, Cav3.2 KO increased excitability in regular spiking intermediate and mature GCs, enabling higher-frequency firing, with little impact on the frequency-dependent response. Overall, this study shows that Cav3.2 channels differentially regulate GC excitability throughout maturation and suggest that calcium influx via Cav3.2 may have maturation-dependent contributions to DG processes such as GC survival, integration, and memory encoding.
Maturational Stage-Dependent Contributions of the Cav3.2 T-Type Calcium Channel to Dentate Gyrus Granule Cell Excitability.
Cav3.2 T 型钙通道对齿状回颗粒细胞兴奋性的成熟阶段依赖性贡献
阅读:4
作者:Sack Anne-Sophie, Garcia Esperanza, Snutch Terrance P
| 期刊: | eNeuro | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Apr 4; 12(4):ENEURO |
| doi: | 10.1523/ENEURO.0423-24.2025 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
