Pseudoginsenoside-F11 attenuates cerebral ischemic injury by alleviating autophagic/lysosomal defects

伪人参皂苷-F11通过缓解自噬/溶酶体缺陷减轻脑缺血损伤

阅读:12
作者:Yue-Yang Liu, Tian-Yu Zhang, Xue Xue, Dong-Mei Liu, Hao-Tian Zhang, Lin-Lin Yuan, Ying-Lu Liu, Han-Lin Yang, Shi-Bo Sun, Cheng Zhang, He-Song Xu, Chun-Fu Wu, Jing-Yu Yang

Aims

Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been reported to exert wide-ranging neuroprotective properties. The aim of this study was to investigate the effect and potential mechanisms of PF11 on the autophagic/lysosomal pathway following ischemic stroke.

Conclusion

These findings indicate that the autophagic flux is impaired in a rat model of pMCAO, and that PF11 exerts an excellent protective effect against ischemic stroke by alleviating autophagic/lysosomal defects.

Methods

Male Sprague-Dawley rats underwent permanent middle cerebral artery occlusion (pMCAO). Cerebral ischemia outcome, TUNEL staining, Fluoro-Jade B staining were carried out 24 hours poststroke. The autophagic/lysosomal-related proteins were measured.

Results

A single administration of PF11 significantly decreased the infarct area, reduced the brain water content, and improved neurological functions, even 4 hours after the onset of pMCAO. Meanwhile, PF11 lessened the ischemic insult-mediated loss of neurons and activation of astrocytes and microglia. Furthermore, PF11 attenuated pMCAO-induced accumulations of autophagosomes and apoptosis. We further observed a remarkable effect of PF11 in reversing the ischemic insult-induced accumulation of autophagosomes (LC3-II) and abnormal aggregation of autophagic proteins (SQSTM1 and ubiquitin). Furthermore, PF11 was capable of improving lysosomal function and lysosome/autophagosome fusion following pMCAO, and this change was reversed by the lysosomal inhibitor chloroquine. Also, the improvement of ischemic outcome and the antiapoptotic effect induced by PF11 was reversed by CQ.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。