Mechanotransductive Activation of PPAR-γ by Low-Intensity Pulsed Ultrasound Induces Contractile Phenotype in Corpus Spongiosum Smooth Muscle Cells.

低强度脉冲超声对 PPAR-γ 的机械转导激活可诱导海绵体平滑肌细胞产生收缩表型

阅读:5
作者:Yu Huan, Li Jianying, Xu Zihan, Peng Zhiwei, Wu Min, Lv Yiqing, Chen Fang, Yu Mingming, Huang Yichen
Background: Previously, we found that the pathological changes in the corpus spongiosum (CS) in hypospadias were mainly localized within smooth muscle tissue, presenting as a transformation from the contraction phenotype to synthesis. The role of low-intensity pulsed ultrasound (LIPUS) in regulating smooth muscle cells (SMCs) and angiogenesis has been confirmed. Objectives: To demonstrate the feasibility of regulating the phenotypic transformation of corpus spongiosum smooth muscle cells (CSSMCs) in hypospadias using LIPUS and to explore the potential mechanisms. Materials and Methods: The CSSMCs were extracted from CS in patients with proximal hypospadias. In vitro experiments were conducted to explore the appropriate LIPUS irradiation intensity and duration which could promote the phenotypic transformation of CSSMCs. A total of 71 patients with severe hypospadias were randomly divided into a control group and a LIPUS group to verify the in vivo transition effect of LIPUS. Consequently, the potential mechanisms by which LIPUS regulates the phenotypic transformation of CSSMCs were explored in vitro. Results: In vitro experiments showed that LIPUS with an intensity of 100 mW/cm(2) and a duration of 10 min could significantly increase the expression of contraction markers in CSSMCs and decrease the expression of synthesis markers. Moreover, LIPUS stimulation could alter the phenotype of CSSMCs in patients with proximal hypospadias. RNA sequencing results revealed that peroxisome proliferator-activated receptor gamma (PPAR-γ) significantly increased after LIPUS stimulation. Overexpression of PPAR-γ significantly increased the expression of contraction markers in CSSMCs, and the knockdown of PPAR-γ blocked this effect. Conclusions: LIPUS can regulate the transition of CSSMCs from a synthetic to a contractile phenotype in hypospadias. The PPAR-γ-mediated signaling pathway is a possible mechanism involved in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。