Mammalian Queuosine tRNA Modification Impacts Translation to Enhance Cell Proliferation and MHC-II Expression.

哺乳动物 Queuosine tRNA 修饰影响翻译,从而增强细胞增殖和 MHC-II 表达

阅读:4
作者:Zbihley Olivia N P, Johnson Katherine, Frietze Luke R, Zhang Wen, Foo Marcus, Tran Hoang Anh V, Chevrier Nicolas, Pan Tao
Queuosine (Q) is a conserved tRNA modification in the wobble anticodon position of tRNAs that read codons of Tyr/His/Asn/Asp. Eukaryotic tRNA Q-modification requires the metabolite queuine - derived from diet or catabolism of the gut microbiome - and a host-genome encoded enzyme complex, QTRT1/QTRT2. tRNA Q-modification has been shown to regulate translational efficiency, but the response of the mammalian transcriptome and tRNAome to tRNA Q-modification in the context of cell proliferation has not been thoroughly investigated. Using cells that differ only in their tRNA Q-modification levels, we found that both human HEK293T cultures and the primary, murine bone marrow-derived dendritic cells (BMDCs) proliferate faster when tRNA Q-modification level is high. We carried out tRNA-seq and mRNA-seq to elucidate the molecular mechanisms underlying this phenotype, revealing distinct tRNA modification and transcriptome changes associated with altered proliferation. In both cell types, the m(2)(2)G tRNA modification is positively correlated to Q-modification, consistent with its reported role in enhancing translational efficiency. We also find that elevated Q-modification levels result in transcriptome changes, but in a context-dependent manner. In HEK293T cells, upregulated genes are in catabolic processes and signaling pathway activation; whereas in BMDCs, upregulated genes are in immune response mediation, proliferation, and immunoglobulin diversification. Codon usage analysis of differentially expressed transcripts is consistent with Q-modification enhancing the translation of ribosomal proteins, which increases cell proliferation. We also find that tRNA Q-modification increases surface presentation of MHC-II in BMDCs. Our results provide insights into the broader implications of tRNA Q-modifications in regulating diverse biological functions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。