Queuosine (Q) is a conserved tRNA modification in the wobble anticodon position of tRNAs that read codons of Tyr/His/Asn/Asp. Eukaryotic tRNA Q-modification requires the metabolite queuine - derived from diet or catabolism of the gut microbiome - and a host-genome encoded enzyme complex, QTRT1/QTRT2. tRNA Q-modification has been shown to regulate translational efficiency, but the response of the mammalian transcriptome and tRNAome to tRNA Q-modification in the context of cell proliferation has not been thoroughly investigated. Using cells that differ only in their tRNA Q-modification levels, we found that both human HEK293T cultures and the primary, murine bone marrow-derived dendritic cells (BMDCs) proliferate faster when tRNA Q-modification level is high. We carried out tRNA-seq and mRNA-seq to elucidate the molecular mechanisms underlying this phenotype, revealing distinct tRNA modification and transcriptome changes associated with altered proliferation. In both cell types, the m(2)(2)G tRNA modification is positively correlated to Q-modification, consistent with its reported role in enhancing translational efficiency. We also find that elevated Q-modification levels result in transcriptome changes, but in a context-dependent manner. In HEK293T cells, upregulated genes are in catabolic processes and signaling pathway activation; whereas in BMDCs, upregulated genes are in immune response mediation, proliferation, and immunoglobulin diversification. Codon usage analysis of differentially expressed transcripts is consistent with Q-modification enhancing the translation of ribosomal proteins, which increases cell proliferation. We also find that tRNA Q-modification increases surface presentation of MHC-II in BMDCs. Our results provide insights into the broader implications of tRNA Q-modifications in regulating diverse biological functions.
Mammalian Queuosine tRNA Modification Impacts Translation to Enhance Cell Proliferation and MHC-II Expression
哺乳动物喹诺辛tRNA修饰影响翻译,从而增强细胞增殖和MHC-II表达
阅读:5
作者:Olivia N P Zbihley ,Katherine Johnson ,Luke R Frietze ,Wen Zhang ,Marcus Foo ,Hoang Anh V Tran ,Nicolas Chevrier ,Tao Pan
| 期刊: | Journal of Molecular Biology | 影响因子: | 4.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 15;437(16):169188. |
| doi: | 10.1016/j.jmb.2025.169188 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
