Microbial iCLIP2: enhanced mapping of RNA-protein interaction by promoting protein and RNA stability.

微生物 iCLIP2:通过促进蛋白质和 RNA 稳定性来增强 RNA-蛋白质相互作用的映射

阅读:6
作者:Stoffel Nina Kim, Sankaranarayanan Srimeenakshi, Müntjes Kira, Körtel Nadine, Busch Anke, Zarnack Kathi, König Julian, Feldbrügge Michael
The entire RNA life cycle, spanning from transcription to decay, is intricately regulated by RNA-binding proteins (RBPs). To understand their precise functions, it is crucial to identify direct targets, pinpoint their exact binding sites, and unravel the underlying specificity in vivo. Individual-nucleotide resolution UV cross-linking and immunoprecipitation 2 (iCLIP2) is a state-of-the-art technique that enables the identification of RBP-binding sites at single-nucleotide resolution. However, in the field of microbiology, optimized iCLIP protocols compared to mammalian systems are lacking. Here, we present the first microbial iCLIP2 approach using the multi-RRM domain protein Rrm4 from the fungus Ustilago maydis as an example. Key challenges, such as inherently high RNase and protease activity in fungi, were addressed by improving mechanical cell disruption and lysis buffer composition. Our modifications increased the yield of cross-link events and improved the identification of Rrm4-binding sites. Thereby, we were able to pinpoint that Rrm4 binds the stop codons of nuclear-encoded mRNAs of mitochondrial respiratory complexes I, III, and V-revealing an intimate link between endosomal mRNA transport and mitochondrial physiology. Thus, our study using U. maydis as an example might serve as a blueprint for optimizing iCLIP2 procedures in other microorganisms with high RNase/protease conditions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。