Immunonutritional consequences of different serine-type protease inhibitors in a C57BL/6 hepatocarcinoma model

不同丝氨酸型蛋白酶抑制剂对 C57BL/6 肝癌模型的免疫营养影响

阅读:5
作者:Jose Laparra, Bartosz Fotschki, Claudia Haros

Abstract

Imbalances in innate immunity and the activity of innate immune cells are implicated in the development of hepatocellular carcinoma (HCC). Plant seeds are good sources of protease inhibitors, which can have a significant influence on human health disorders, especially in the field of cancer prevention. To elucidate the impact and preventive effects of immunonutritional serine-type protease inhibitors (STPIs) on HCC, it was used an established model of chemically induced liver injury. Injured livers induced Akt as well as hepatic infiltration of NKG2D + and CD74 + cells. Feeding STPIs reduced size and number of intrahepatic nodes of mononuclear. These animals showed an inverse association of the severity of HCC with bioactive hepcidin levels, which was significantly correlated with the hepatic myeloperoxidase activity. According to their origin, administration of STPIs significantly induce increased numbers of F4/80 + cells in injured livers that can be responsible for the biological effects detected on the parenchyma and inflammatory markers under DEN/TAA treatment. These findings can have direct implications in HCC immunotherapy where enhanced response(s) in inflammation-driven cancer patients could help promoting inflammation-driven processes and favor tumor growth. Altogether, this study demonstrates that oral administration of STPIs modulate innate immunity response influencing HCC aggressiveness and progression. These results represent a path forward to develop durable, long-lasting response against hepatocarcinoma and open a future research path in the development of coadjutant intervention strategies to pharmacological therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。