Association of microtubule destabilization with platelet yields in terminally differentiating hiPSC-derived megakaryocyte lines.

微管不稳定与终末分化 hiPSC 衍生巨核细胞系中血小板产量的相关性

阅读:8
作者:Nakamura Emiri, Harada Yasuo, Bingham Trevor, Skorik Christian, Jha Anjali, Atwater John, Higashi Natsumi, Fujio Kosuke, Ishiguro Mariko, Okamoto Haruki, Zon Leonard I, Daley George Q, Frelinger Andrew L, Eto Koji, Schlaeger Thorsten M
Millions of platelet units are needed each year to manage thrombocytopenia and other conditions linked to excessive bleeding. These life-saving treatments still depend entirely on donated platelets, despite the numerous shortcomings associated with them, such as limited shelf life, supply shortages, unpredictable functionality, potential for infection, as well as immune-incompatibility issues. These challenges could be overcome with universal donor platelets generated from human induced pluripotent stem cell (hiPSC)-derived megakaryocytes (MKs). We recently developed expandable hiPSC-derived megakaryocytic cell lines (imMKCLs) as a potentially unlimited source for platelet production. imMKCL-derived platelets are functional and have already been tested in patients. In this study, we demonstrate through single-cell time-course imaging that imMKCL maturation is heterogeneous and asynchronous, with only a few imMKCLs generating platelets at any given time under static culture conditions. Using a chemical screen, we identify microtubule (MT) destabilizing agents, including vincristine (VCR), as promising hits, with a larger proportion of VCR-exposed imMKCLs developing proplatelet extensions and more platelets being produced per imMKCL. VCR use reduces the MT content of imMKCLs and results in the production of platelets with a diminished peripheral MT ring structure. Nevertheless, these platelets are functional, as evidenced by their normal response to agonists, their ability to attach to and spread on fibrinogen-coated surfaces, and their capacity to restore hemostasis in vivo. Interestingly, we also observed a negative correlation between the MT content of imMKCLs and platelet yields when we compared imMKCLs differentiated under static conditions (MThigh, low yield) to our turbulence-optimized VerMES™ bioreactor (MTlow, high yield). Taken together, our findings highlight the importance of MT dynamics in megakaryocyte biology, provide a possible explanation for the still poorly understood link between vinca alkaloid in vivo use and thrombocytosis, and bring us closer to realizing the clinical potential of affordable, off-the-shelf hiPSC-derived platelets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。