As the independent anti-inflammatory effects of mesenchymal stem cells (MSCs) and glucocorticoids are well documented, it is hypothesized that the conditioned media derived from dexamethasone (DEXA)-treated MSCs may exhibit a potent therapeutic effect. To explore this, bone marrow-derived MSCs were transiently maintained in DEXA-containing media, where cell viability, phenotype, and osteogenic differentiation were assessed. Furthermore, the MSC-conditioned media (MSC-CN) was utilized to inhibit the proliferation of hepatoma cells and treat drug-induced acute liver failure (ALF) in mice. We found that low doses of DEXA (â¤100 nM) maintained MSC viability and their typical mesenchymal phenotype. Conversely, 1000 nM decreased the expression of the mesenchymal markers (CD105 and CD90), triggered osteogenic differentiation as evidenced by the modulation of osteogenesis-related genes (alkaline phosphatase, osteopontin, and Runt-related transcription factor 2), and increased the intracellular calcium, assessed by Alizarin Red S staining. Moreover, MSC-DEXA-S restricted colony formation, cell migration, and glucose consumption in hepatoma cells. In parallel, MSC-DEXA-S protected mice against acetaminophen-induced ALF, where both liver functions, oxidative stress (Nrf-2, SOD1, GSH, and MDA), angiogenic (VEGF), and inflammatory (TNF-α) markers were improved. Also, MSC-DEXA-S resolved liver necrosis one week after transfusion. These data suggest that pretreatment of MSCs with low doses of dexamethasone maintains their stemness and enhances their paracrine therapeutic effect against hepatic diseases.
Dexamethasone-boosted mesenchymal stem cell secretome: insight into hepatic protection.
地塞米松增强间充质干细胞分泌组:对肝脏保护的深入了解
阅读:5
作者:Adly Eiman M, Diab Thoria, Hessien Mohamed
| 期刊: | BMC Biotechnology | 影响因子: | 3.400 |
| 时间: | 2025 | 起止号: | 2025 Jun 4; 25(1):44 |
| doi: | 10.1186/s12896-025-00980-8 | 研究方向: | 发育与干细胞、细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
