Osterix-driven LINC complex disruption in vivo diminishes osteogenesis at 8 weeks but not at 15 weeks.

体内 Osterix 驱动的 LINC 复合物破坏会在 8 周时减少骨生成,但在 15 周时不会

阅读:16
作者:Birks Scott, Howard Sean, O'Rourke Caroline, Thompson William R, Lau Anthony, Uzer Gunes
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a crucial connective component between the nuclear envelope and the cytoskeleton involving various cellular processes including nuclear positioning, nuclear architecture, and mechanotransduction. How LINC complexes regulate bone formation in vivo, however, is not well understood. To start bridging this gap, here we created a LINC disruption murine model using transgenic mice expressing Cre recombinase enzyme under the control of the Osterix (Osx-Cre) which is primarily active in pre-osteoblasts and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Tg(CAG-LacZ/EGFP-KASH2) mice contain a lox-STOP-lox flanked LacZ gene which is deleted upon cre recombination allowing for the overexpression of an EGFP-KASH2 fusion protein. This overexpressed protein disrupts endogenous Nesprin-Sun binding leading to disruption of LINC complexes. Thus, crossing these two lines results in an  Osx- driven  LINC  disruption (ODLD) specific to pre-osteoblasts. In this study, we investigated how this LINC disruption affects exercise-induced bone accrual. ODLD cells had decreased osteogenic and adipogenic potential in vitro compared to non-disrupted controls and sedentary ODLD mice showed decreased bone quality at 8 weeks. Upon access to a voluntary running wheel, ODLD animals showed increased running time and distance; however, our 6-week exercise intervention did not significantly affect bone microarchitecture and bone mechanical properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。