Basal forebrain magnocellular cholinergic systems are damaged in mice following neonatal hypoxia-ischemia.

新生儿缺氧缺血后,小鼠基底前脑大细胞胆碱能系统受损

阅读:4
作者:Northington Frances J, Kratimenos Panagiotis, Turnbill Victoria, Flock Debra L, Asafu-Adjaye Daniella, Chavez-Valdez Raul, Martin Lee J
Neonatal hypoxic-ischemic encephalopathy (HIE) causes lifelong neurologic disability. Despite the use of therapeutic hypothermia, memory deficits and executive functions remain severely affected. Cholinergic neurotransmission from the basal forebrain to neocortex and hippocampus is central to higher cortical functions. We examined the basal forebrain by light microscopy and reported loss of choline acetyltransferase-positive (ChAT)+ neurons, at postnatal day (P) 40, in the ipsilateral medial septal nucleus (MSN) after neonatal hypoxia-ischemia (HI) in mice. There was no loss of ChAT+ neurons in the ipsilateral nucleus basalis of Meynert (nbM) and striatum. Ipsilateral striatal and nbM ChAT+ neurons were abnormal with altered immunoreactivity for ChAT, shrunken and crenated somas, and dysmorphic appearing dendrites. Using confocal images with 3D reconstruction, nbM ChAT+ dendrites in HI mice were shorter than sham (p = .0001). Loss of ChAT+ neurons in the MSN directly correlated with loss of ipsilateral hippocampal area. In the nbM and striatum, percentage of abnormal ChAT+ neurons correlated with loss of ipsilateral cerebral cortical and striatal area, respectively. Acetylcholinesterase (AChE) activity increased in adjacent ipsilateral cerebral cortex and hippocampus and the increase was linearly related to loss of cortical and hippocampal area. Numbers and size of cathepsin D+ lysosomes increased in large neurons in the ipsilateral nbM. After neonatal HI, abnormalities were found throughout the major cholinergic systems in relationship to amount of forebrain area loss. There was also an upregulation of cathepsin D+ particles within the nbM. Cholinergic neuropathology may underlie the permanent dysfunction in learning, memory, and executive function after neonatal brain injury.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。