Leveraging the interconnected unfolded protein response and NLRP3 inflammasome pathways to reactivate Epstein-Barr virus in diffuse large B-cell lymphomas.

利用相互关联的未折叠蛋白反应和 NLRP3 炎症小体通路重新激活弥漫性大 B 细胞淋巴瘤中的 Epstein-Barr 病毒

阅读:18
作者:Xu Huanzhou, Hutchinson Tarun E, Koganti Siva, Rousseau Beth A, Xia Daniel, McIntosh Michael T, Bhaduri-McIntosh Sumita
Diffuse large B-cell lymphoma (DLBCL), when associated with Epstein-Barr virus (EBV) in immunocompromised individuals such as AIDS patients, presents a significant treatment challenge. Lytic induction therapy, which reactivates latent EBV to directly kill tumor cells and sensitize them to nucleoside analogs that block viral replication and immune clearance, offers promise. However, little is known about EBV reactivation in DLBCL. Here, we examined four EBV-positive DLBCL cell lines and found variable, cell-line-specific responses to lytic stimuli, with most showing an abortive response-either before or after genome replication, without virus release. This is in contrast to commonly studied lymphoma cells in which EBV reactivation typically leads to a full lytic cycle. Mechanistically, we show that the unfolded protein response (UPR), via a splice variant of the transcription factor XBP1, upregulates TXNIP and NLRP3, activating the inflammasome and removing a barrier to transcription of the EBV latent-to-lytic switch gene BZLF1. Combining lytic induction with the nucleoside analog ganciclovir enhanced oncolytic cell death. This study identifies a pivotal link between two danger sensing pathways, the UPR and the inflammasome, in reactivating the virus resident in DLBCL and suggests that controlled lytic reactivation could provide a basis for EBV-targeted therapies to improve outcomes in this malignancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。