Partial normalization of hippocampal oscillatory activity during sleep in TgF344-AD rats coincides with increased cholinergic synapses at early-plaque stage of Alzheimer's disease.

TgF344-AD 大鼠睡眠期间海马振荡活动的部分正常化与阿尔茨海默病早期斑块阶段胆碱能突触的增加相吻合

阅读:9
作者:Berg Monica van den, Heymans Loran, Toen Daniëlle, Adhikari Mohit A, Audekerke Johan Van, Verschuuren Marlies, Pintelon Isabel, Vos Winnok H De, Linden Annemie Van der, Verhoye Marleen, Keliris Georgios A
Sleep alterations are known to occur in Alzheimer's disease (AD), before cognitive symptoms become apparent, and are thought to play an important role in the pathophysiology of AD. However, knowledge on the extent of macro- and microstructural changes of sleep during early, presymptomatic stages of AD is limited. We hypothesize that Aβ-induced perturbations of neuronal activity disrupt this oscillatory activity during sleep at pre-plaque stages of AD. In this study, we aimed to assess hippocampal oscillatory activity during sleep at pre- and early-plaque stages of AD, by performing 24-hour hippocampal electrophysiological measurements in TgF344-AD rats and wildtype littermates at pre- and early-plaque stages of AD. To provide a mechanistic understanding, histological analysis was performed to quantify GABA-ergic, glutamatergic and cholinergic synapses. We observed a differential impact of AD on hippocampal activity during rapid eye movement (REM) and non-REM (NREM) sleep, in the absence of robust changes in circadian rhythm. TgF344-AD rats demonstrated increased duration of sharp wave-ripples during NREM sleep, irrespective of age. Interestingly, a significantly decreased theta-gamma coupling was observed in TgF344-AD rats, prior to amyloid plaque deposition, which was partially restored at the early-plaque stage. The partial recovery of hippocampal activity during REM sleep coincided with an increased number of cholinergic synapses in the hippocampus during the early-plaque stage in TgF344-AD rats, suggestive of basal forebrain cholinergic compensation mechanisms. The results from this study reveal early changes in hippocampal activity prior to Aβ plaque deposition in AD. In addition, the current findings imply an important role of the cholinergic system to compensate for AD-related network alterations, thereby partially restoring sleep architecture and hippocampal activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。