Sex and strain differences in dynamic and static properties of the mesolimbic dopamine system

中脑边缘多巴胺系统动态和静态特性的性别和应变差异

阅读:5
作者:Maria Teresa Rivera-Garcia, Aqilah M McCane, Tara G Chowdhury, Kathryn G Wallin-Miller, Bita Moghaddam

Abstract

Sex is a biological variable that contributes to the incidence, clinical course, and treatment outcome of brain disorders. Chief among these are disorders associated with the dopamine system. These include Parkinson's disease, ADHD, schizophrenia, and mood disorders, which show stark differences in prevalence and outcome between men and women. In order to reveal the influence of biological sex as a risk factor in these disorders, there is a critical need to collect fundamental information about basic properties of the dopamine system in males and females. In Long Evans rats, we measured dynamic and static properties related to the mesolimbic dopamine system. Static measures included assessing ventral tegmental area (VTA) dopamine cell number and volume and expression of tyrosine hydroxylase and dopamine transporter. Dynamic measures in behaving animals included assessing (1) VTA neuronal encoding during learning of a cue-action-reward instrumental task and (2) dopamine release in the nucleus accumbens in response to electrical stimulation of the VTA, vesicular depletion of dopamine, and amphetamine. We found little or no sex difference in these measures, suggesting sexual congruency in fundamental static and dynamic properties of dopamine neurons. Thus, dopamine related sex-differences are likely mediated by secondary mechanisms that flexibly influence the function of the dopamine cells and circuits. Finally, we noted that most behavioral sex differences had been reported in Sprague-Dawley rats and repeated some of the above measures in that strain. We found some sex differences in those animals highlighting the importance of considering strain differences in experimental design and result interpretation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。