High-affinity transferrin receptor binding improves brain delivery of bispecific antibodies at tracer dose.

高亲和力转铁蛋白受体结合可提高示踪剂量双特异性抗体向大脑的递送效率

阅读:6
作者:Bonvicini Gillian, Singh Sunitha, Sandersjöö Lisa, Dallas Tiffany, Schlein Eva, Dahlén Amelia D, Lopes van den Broek Sara, Sehlin Dag, Andersson Ken G, Syvänen Stina
BACKGROUND: Transferrin receptor (TfR)-mediated transcytosis is a well-established method for delivering biologic therapeutics and diagnostics to the brain. Although moderate affinity towards TfR is beneficial for TfR-mediated brain delivery at therapeutic doses, emerging evidence has indicated that high TfR affinity may be more beneficial at tracer doses. With the development of antibody-based PET radioligands for neurodegenerative diseases, such as Alzheimer's disease, understanding the pharmacokinetics of TfR-binders at tracer dose is essential. Thus, this study aimed to evaluate the effect of TfR affinity on brain uptake at a tracer dose in both wild-type (WT) and amyloid-beta (Aβ) pathology presenting mice and to demonstrate the usability of TfR-mediated brain delivery of immunoPET diagnostic radioligands to visualize intrabrain Aβ pathology in vivo. METHODS: Three different affinity variants of anti-mouse TfR-binding antibody 8D3, engineered by alanine point mutations, were selected. Bispecific antibodies were designed with knob-into-hole technology with one arm targeting TfR (8D3) and the other arm targeting human Aβ (bapineuzumab). Antibody affinities were measured in an in vitro cell assay. In vivo pharmacokinetic analyses of radioiodinated bispecific antibodies and bapineuzumab in brain, blood and peripheral organs were performed over 7 days post-injection in WT mice and a model of Aβ pathology (App(NL-G-F)). The strongest TfR affinity bispecific antibody was also evaluated as a positron emission tomography (PET) radioligand for detecting Aβ pathology in WT and App(NL-G-F) mice. RESULTS: The three bispecific antibodies bound to TfR with affinities of 10 nM, 20 nM and 240 nM. Independent of genotype, stronger TfR-affinity resulted in higher initial brain uptake. The two higher-affinity bispecific antibodies behaved similarly and differentiated between WT and App(NL-G-F) mice earlier than the lowest affinity variant. Finally, the 10 nM bispecific antibody was able to clearly differentiate between WT and App(NL-G-F) mice when used as a PET radioligand. CONCLUSION: This study supports the hypothesis that stronger TfR affinity enhances brain uptake at a tracer dose. With the more effective detection of Aβ pathology, stronger TfR affinity is a crucial design feature for future bispecific immunoPET radioligands for intrabrain targets via TfR-mediated transcytosis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。