Three dimensional immunohistochemistry (3D-IHC), immunolabeling of 3D tissues, reveals the spatial organization of molecular and cellular assemblies in the context of the tissue architecture. Deep and rapid penetration of antibodies into 3D tissues and highly sensitive detection are critical for high-throughput imaging analysis of immunolabeled 3D tissues. Here, we report a nanobody (nAb)-based 3D-IHC, POD-nAb/FT-GO 3D-IHC, for high-speed and high-sensitive detection of targets within 3D tissues. Peroxidase-fused nAbs (POD-nAbs) enhanced immunolabeling depth and allowed for highly sensitive detection by combined with a fluorescent tyramide signal amplification system, Fluorochromized Tyramide-Glucose Oxidase (FT-GO). Multiplex labeling was implemented to the 3D-IHC by quenching POD with sodium azide. Using the 3D-IHC technique, we successfully visualized somata and processes of neuronal and glial cells in millimeter-thick mouse brain tissues within three days. Given its high-speed and high-sensitive detection, our 3D-IHC protocol, POD-nAb/FT-GO 3D-IHC, would provide a useful platform for histochemical analysis in 3D tissues.
A three dimensional immunolabeling method with peroxidase-fused nanobodies and fluorochromized tyramide-glucose oxidase signal amplification.
采用过氧化物酶融合纳米抗体和荧光染色酪胺-葡萄糖氧化酶信号放大的三维免疫标记方法
阅读:4
作者:Yamauchi Kenta, Koike Masato, Hioki Hiroyuki
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Jun 18; 8(1):903 |
| doi: | 10.1038/s42003-025-08317-z | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
