Targeting the Sodium-Potassium Pump as a Therapeutic Strategy in Acute Myeloid Leukemia.

以钠钾泵为靶点治疗急性髓系白血病

阅读:4
作者:Schneider Constanze, Spaink Hermes, Alexe Gabriela, Dharia Neekesh V, Meyer Ashleigh, Merickel Lucy A, Khalid Delan, Scheich Sebastian, Häupl Björn, Staudt Louis M, Oellerich Thomas, Stegmaier Kimberly
Tissue-specific differences in the expression of paralog genes, which are not essential in most cell types due to the buffering effect of the partner pair, can make for highly selective gene dependencies. To identify selective paralogous targets for acute myeloid leukemia (AML), we integrated the Cancer Dependency Map with numerous datasets characterizing protein-protein interactions, paralog relationships, and gene expression in cancer models. In this study, we identified ATP1B3 as a context-specific, paralog-related dependency in AML. ATP1B3, the β-subunit of the sodium-potassium pump (Na/K-ATP pump), interacts with the α-subunit ATP1A1 to form an essential complex for maintaining cellular homeostasis and membrane potential in all eukaryotic cells. When ATP1B3's paralog ATP1B1 is poorly expressed, elimination of ATP1B3 leads to the destabilization of the Na/K-ATP pump. ATP1B1 expression is regulated through epigenetic silencing in hematopoietic lineage cells through histone and DNA methylation in the promoter region. Loss of ATP1B3 in AML cells induced cell death in vitro and reduced leukemia burden in vivo, which could be rescued by stabilizing ATP1A1 through overexpression of ATP1B1. Thus, ATP1B3 is a potential therapeutic target for AML and other hematologic malignancies with low expression of ATP1B1. Significance: ATP1B3 is a lethal selective paralog dependency in acute myeloid leukemia that can be eliminated to destabilize the sodium-potassium pump, inducing cell death.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。