Human placenta-derived endothelial progenitor cells: an animal-free culture system for efficient expansion.

人胎盘来源的内皮祖细胞:一种用于高效扩增的无动物培养系统

阅读:13
作者:Yuan Shengnan, Li Mengrou, Wang Junhao, Ju Wen, Huang Yujin, Li Yue, Fan Haohan, Zeng Lingyu
BACKGROUND: Endothelial progenitor cells (EPCs) play a critical role in vasculogenesis and vascular repair, but their clinical application is hindered by challenges such as cell purity, quantity, and reliance on fetal bovine serum (FBS). This study developed an animal-free system for isolating, induction, and expanding EPCs from the human placenta, evaluating their potential for wound repair. METHODS: Mononuclear cells (MNCs) were isolated from full-term placenta and induced into EPCs using an animal-free medium supplemented with bFGF, IGF, and VEGF. EPCs were characterized by flow cytometry for markers CD133, CD34, and VEGFR2, while CD31 and CD45 served as negative markers. Functional assays, including Ac-LDL uptake, migration, and tube formation, confirmed EPC properties. The wound-repair potential was assessed in a mouse model. RESULTS: The induced EPCs exhibited high purity (> 95%) and expressed CD133, CD34, and VEGFR2 while being negative for CD31 and CD45. The system yielded 1 × 10⁸ EPCs from 10 g of placental tissue, demonstrating high proliferative capacity. Functional assays confirmed robust tube formation, migration, and Ac-LDL uptake in vitro. In vivo, EPCs significantly enhanced wound repair. CONCLUSIONS: In conclusion, human placenta-derived EPCs cultured in an animal-free system displayed high purity, self-renewal capacity, and functional efficacy, making them a promising cell source for therapeutic applications, particularly in wound repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。