Endothelial Activation and Permeability in Patients on VV-ECMO Support: An Exploratory Study.

VV-ECMO 支持患者的内皮激活和通透性:一项探索性研究

阅读:11
作者:Volleman Carolien, Li Yakun, Tuip-de Boer Anita M, Polet Chantal A, Ibelings Roselique, Slim Marleen A, Hamer Henrike M, Vlaar Alexander P J, van den Brom Charissa E
Background Veno-venous extracorporeal membrane oxygenation (VV-ECMO) supports critically ill patients with respiratory failure. However, ECMO may induce systemic inflammation, hemolysis, and hemodilution, potentially resulting in endothelial activation and damage. Therefore, this study explored the longitudinal changes in circulating markers of inflammation, hemolysis, and endothelial activation and damage in patients with COVID-19 on VV-ECMO. Methods Plasma was obtained before, within 48 h as well as on day 4, week 1, and week 2 of ECMO support and after decannulation. Circulating markers were measured using Luminex, ELISA, and spectrophotometry. Human pulmonary endothelial cells were exposed to patient plasma, and in vitro endothelial permeability was assessed using electric cell-substrate impedance sensing. Results From April 2020 to January 2022, plasma was collected from 14 patients (71.4% male; age 54 (45-61) years). IL-6 levels decreased (1.238 vs. 0.614 ng/mL, p = 0.039) while ICAM-1 increased (667 vs. 884 ng/mL, p = 0.003) over time when compared to pre-ECMO. Angiopoietin-1 decreased after ECMO initiation (7.57 vs. 3.58 ng/mL, p = 0.030), whereas angiopoietin-2 increased (5.20 vs. 10.19 ng/mL, p = 0.017), particularly in non-survivors of ECMO. Cell-free hemoglobin decreased directly after VV-ECMO initiation but remained stable thereafter (55.29 vs. 9.19 mg/dL, p = 0.017). Moreover, the plasma obtained at several time points during the ECMO run induced in vitro pulmonary endothelial hyperpermeability. Conclusions This exploratory study shows that patients on VV-ECMO support due to COVID-ARDS exhibit progressive endothelial activation and damage but not inflammation and hemolysis. Larger prospective studies are necessary to elucidate pathophysiological pathways leading to endothelial activation and damage, thereby reducing organ failure in these critically ill patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。