ARF6 (ADP-ribosylation factor 6), a GTPase associated with cancer metastasis, is activated in the lung endothelium in pulmonary arterial hypertension (PAH). To identify ARF6-regulated pathways relevant to PAH, we performed a state-of-the-art proteomic analysis of human pulmonary artery endothelial cells (HPAECs) overexpressing the wild-type, constitutively active, fast-cycling, and dominant-negative mutants of ARF6. The analysis revealed a novel link of ARF6 with HIF (hypoxia-inducible factor), in addition to endocytotic vesicle trafficking, cell proliferation, angiogenesis, oxidative stress, and lipid metabolism. Active ARF6 markedly increased expression and activity of HIF-2, critical in PAH, with HIF-1 relatively unaffected. Hypoxic ARF6 activation was a prerequisite for HIF-2 activation and HIF-dependent gene expression in HPAECs, PAH blood-derived late-outgrowth endothelial colony-forming cells, and hypoxic mouse lungs in vivo. A novel ARF6 inhibitor, chlortetracycline (CTC), reduced hypoxia-induced HIF-2 activation, proliferation, and angiogenesis in HPAECs and reduced HIF-2 expression in lung and heart tissues of hypoxic mice. PAH endothelial colony-forming cells showed elevated expression and activity of ARF6 and HIF2, which was attenuated by CTC, and oral CTC attenuated development of pulmonary hypertension in chronically hypoxic mice. We identify EGFR (epidermal growth factor receptor) as a direct interactor of ARF6 and EGFR signaling as a crucial mechanism linking ARF6 and HIF activation. In conclusion, we are the first to demonstrate a key role of ARF6 in the regulation of HIF-2α activation in vitro and in vivo and show that HIF-2α, a master regulator of vascular remodeling in PAH, can be targeted by a clinically approved antibiotic CTC.
ARF6 as a Novel Activator of HIF-2α in Pulmonary Arterial Hypertension.
ARF6 作为肺动脉高压中 HIF-2α 的新型激活剂
阅读:17
作者:Fellows Adam L, Chen Chien-Nien, Xie Chongyang, Iyer Nayana, Schmidt Lukas, Yin Xiaoke, Yates Luke A, Mayr Manuel, Cowburn Andrew, Zhao Lan, Wojciak-Stothard Beata
| 期刊: | American Journal of Respiratory Cell and Molecular Biology | 影响因子: | 5.300 |
| 时间: | 2025 | 起止号: | 2025 Apr;72(4):380-392 |
| doi: | 10.1165/rcmb.2024-0149OC | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
