Inhibition of p38-MK2 pathway enhances the efficacy of microtubule inhibitors in breast cancer cells.

抑制 p38-MK2 通路可增强微管抑制剂对乳腺癌细胞的疗效

阅读:4
作者:Chen Yu-Chia, Takada Mamoru, Nagornyuk Aerica, Yu Muhan, Yamada Hideyuki, Nagashima Takeshi, Ohtsuka Masayuki, DeLuca Jennifer G, Markus Steven M, Takaku Motoki, Suzuki Aussie
Microtubule-targeting agents (MTAs) have been successfully translated from basic research into clinical therapies and have been widely used as first- and second-line chemotherapy drugs for various cancers. However, current MTAs exhibit positive responses only in subsets of patients and are often accompanied by side effects due to their impact on normal cells. This underscores an urgent need to develop novel therapeutic strategies that enhance MTA efficacy while minimizing toxicity to normal tissues. In this study, we demonstrate that inhibition of the p38-MK2 (MAP kinase-activated protein kinase 2) pathway sensitizes cancer cells to MTA treatment. We utilize CMPD1, a dual-target inhibitor, to concurrently suppress the p38-MK2 pathway and microtubule dynamicity. In addition to its established role as an MK2 inhibitor, we find that CMPD1 rapidly induces microtubule depolymerization, preferentially at the microtubule plus-end, leading to the inhibition of tumor growth and cancer cell invasion in both in vitro and in vivo models. Notably, 10 nM CMPD1 is sufficient to induce irreversible mitotic defects in cancer cells, but not in non-transformed normal cells, highlighting its high specificity to cancer cells. We further validate that a specific p38-MK2 inhibitor significantly potentiates the efficacy of sub-clinical concentrations of MTA. In summary, our findings suggest that the p38-MK2 pathway presents a promising therapeutic target in combination with MTAs in cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。