Triple periodic minimal surface lattices have been introduced to dental and medical devices. Numerous designs of these porous structures have been proposed, but the impact of the surface properties of the different topographic lattices are not fully understood. So, this study aimed to examine the cellular and inflammatory responses to different lattice designs, including strut-based and surface-based lattices. Human osteoblasts, human umbilical vein endothelial cells, and monocytes were used to evaluate cell proliferation, osteogenic differentiation, and inflammatory response on lattices after surface treatment strategies. Post-surface treatment of chemical etching, in addition to improving the surface roughness by removing some adhered metal powder, also modulated the surface energy. The lattice design had no significant impact on cell proliferation, but higher cell proliferation was found in post-surface treated lattices, regardless of topographic design. For angiogenesis, there was no difference in the release of pro-angiogenic growth factors between topographic designs or post-surface treatment groups. Moreover, lattices with the post-surface treatment were prone to have a lower inflammation phenotype when compared to an as-printed lattice, though not in a significant manner. This study implies that different topographic lattice designs may not have a major impact on bone ingrowth; nevertheless, post-surface treatment and surface properties of lattice may have an influence on a macrophage-induced inflammatory response.
Evaluating Surface Properties and Cellular Responses to Surface-Treated Different Triple Periodic Minimal Surface L-PBF Ti6Al4V Lattices for Biomedical Devices.
评估表面处理的不同三周期最小表面 L-PBF Ti6Al4V 晶格的表面特性和细胞反应,用于生物医学设备
阅读:8
作者:Srimaneepong Viritpon, Trachoo Vorapat, Phothichailert Suphalak, Srithanyarat Supreda Suphanantachat, Mahanonda Rangsini, Norbert Heil, Khrueaduangkham Suppakrit, Promoppatum Patcharapit, Osathanon Thanaphum
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 25; 26(7):2960 |
| doi: | 10.3390/ijms26072960 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
