Biomimetic Dynamics of Nanoscale Groove and Ridge Topography for Stem Cell Regulation.

纳米级沟槽和脊状形貌的仿生动力学及其在干细胞调控中的应用

阅读:12
作者:Hong Hyunsik, Kim Dahee, Jung Hwapyung, Kim Seongyeol, Min Sunhong, Kim Chowon, Kim Kanghyeon, Rha Hyunji, Kang Heemin
Native extracellular matrix exhibits multiscale groove and ridge structures that continuously change, such as collagen fibril-based nanogrooves in bone tissue, and regulate cellular responses. However, dynamic switching between groove and ridge nanostructures at the molecular level has not been demonstrated. Herein, materials capable of dynamic groove-ridge switching at tens-of-nanometers scale are developed by flexibly conjugating RGD-magnetically activatable nanoridges (MANs) to non-magnetic nanogrooves with independently tuned widths comparable to the sizes of integrin-presenting filopodia by modulating hydrophobicity in bicontinuous microemulsion, allowing for cyclic modulation of RGD accessibility and cellular adhesion. Nanogrooves with medium width restrict RGD accessibility in the "groove" state in which the RGD-MANs are buried, which is reversed by magnetically raising them to protrude and form the "ridge" state that fully exposes the RGDs. This reversibly stimulates integrin recruitment, focal adhesion complex assembly, mechanotransduction, and differentiation of stem cells in vivo. This is the first demonstration of molecular-level groove and ridge nanostructures that exhibit unprecedented switchability between groove and ridge nanostructures. Versatile tuning of the width, height, pitch, and shape of intricate nanogroove structures with remote manipulability can enlighten the understanding of molecular-scale cell-ligand interactions for stem cell engineering-based treatment of aging, injuries, and stress-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。