Force sensors for measuring microenvironmental forces during mesenchymal condensation.

用于测量间充质凝聚过程中微环境力的力传感器

阅读:4
作者:Gutierrez Robert A, Fang Wenqiang, Kesari Haneesh, Darling Eric M
Mechanical forces are an essential element to early tissue formation. However, few techniques exist that can quantify the mechanical microenvironment present within cell-dense neotissues and organoid structures. Here is a versatile approach to measure microscale, cellular forces during mesenchymal condensation using specially tailored, hyper-compliant microparticles (HCMPs). Through monitoring of HCMP deformation over both space and time, measurements of the mechanical forces that cells exert, and have exerted on them, during tissue formation are acquired. The current study uses this technology to track changes in the mechanical microenvironment as mesenchymal stem cells self-assemble into spheroids and condense into cohesive units. An array analysis approach, using a high-content imaging system, shows that cells exert a wide range of tensile and compressive forces during the first few hours of self-assembly, followed by a period of relative equilibrium. Cellular interactions with HCMPs are further examined by applying collagen coating, which allows for increased tensile forces to be exerted compared to non-coated HCMPs. Importantly, the hyper-compliant nature of our force sensors allows for increased precision over less compliant versions of the same particle. This sensitivity resolves small changes in the microenvironment even at the earliest stages of development and morphogenesis. The overall experimental platform provides a versatile means for measuring direct and indirect spatiotemporal forces in cell-dense biological systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。