Depletion of Hepatic SREBP2 Protects Against Hypercholesterolemia and Atherosclerosis through the ANGPTL3-LPL Axis.

肝脏 SREBP2 的耗竭通过 ANGPTL3-LPL 轴对高胆固醇血症和动脉粥样硬化起到保护作用

阅读:4
作者:Wang Yifan, Choe Jia You Sarafina, Shi Yu, Thi Thi Tun, Cao Xiaoyun, Hu Yang, Cheng Kai Yan, Li Hui, Ji Yang, Liu Yan, Ackers-Johnson Matthew, Foo Roger S Y, Shen Yujia, Yu Haojie
Lipolysis of triglyceride-rich lipoproteins by peripheral lipoprotein lipase (LPL) plays an essential role in maintaining systemic cholesterol/lipid homeostasis. Human genetic studies have unequivocally demonstrated that activation of LPL pathway reduces risks for both coronary artery disease (CAD) and type 2 diabetes (T2D). Although sterol regulatory element-binding protein 2 (SREBP2) is well established as the master transcription factor that regulates the hepatic biosynthesis of both cholesterol and fatty acids, whether and how its activity in liver interacts with peripheral LPL pathway remains unknown. Here, it is demonstrated that acute liver-specific depletion of SREBP2 results in divergent effects on the regulation of peripheral LPL activity in mice, depending on the presence or absence of low-density lipoprotein receptors (LDLR). SREBP2 deficiency drastically elevates peripheral LPL activity through downregulation of plasma angiopoietin-related protein 3 (ANGPTL3) levels in LDLR-deficient mice. Moreover, in addition to SREBP2's transcriptional regulation of ANGPTL3, it is found that SREBP2 promotes proteasome-based degradation of ANGPTL3 in the presence of LDLR. Remarkably, acute depletion of hepatic SREBP2 protects against hypercholesterolemia and atherosclerosis, in which atherosclerotic lesions are reduced by 45% compared to control littermates. Taken together, these findings outline a liver-peripheral crosstalk mediated by SREBP2-ANGPTL3-LPL axis and suggest that SREBP2 inhibition can be an effective strategy to tackle homozygous familial hypercholesterolemia (HoFH).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。