Oxytocin enhances oligodendrocyte development and improves social deficits in autistic rats.

催产素可促进少突胶质细胞发育,改善自闭症大鼠的社交缺陷

阅读:5
作者:Wen Min, Zheng Shuang, Luo Hongbo, Zhang Yi, Zhou Bo
PURPOSE: Autism spectrum disorder (ASD) is a neurodevelopmental condition with complex etiological factors, including genetic predisposition and environmental influences. In particular, exposure to environmental stressors in utero has increasingly been implicated in disrupting fetal neurodevelopment and potentially contributing to the pathogenesis of ASD in offspring. The aim of this study was to investigate the therapeutic potential of oxytocin and to elucidate its underlying molecular mechanisms in a valproic acid (VPA) exposure-induced rat model of ASD. METHODS: To generate the ASD offspring model, pregnant rats received intraperitoneal injections of VPA on embryonic day 12.5 (E12.5). A control group was administered saline instead. Only male offspring were included in subsequent experiments. On postnatal day 21 (P21), VPA-exposed offspring were randomly divided into: (1) VPA group (ASD model) and (2) VPA+OT (oxytocin inhaled daily, 400 ug/kg, P21-42) group. Behavioral assessments (social behaviors, stereotyped behaviors, anxiety-like behaviors) and amygdala RNA sequencing were compared across control group, VPA group, and VPA+OT group. Both threshold and threshold-free bioinformatics analysis methods were employed to identify the potential therapeutic mechanisms of oxytocin. The findings were further validated using transmission electron microscopy and qPCR. RESULTS: Intranasal oxytocin administration significantly ameliorated social deficits, repetitive behaviors, and anxiety-like responses in ASD model rats. Transcriptomic profiling revealed substantial neurodevelopmental abnormalities in VPA group. Consistent results from GSEA enrichment analysis, dynamic gene expression pattern analysis and WGCNA showed significant suppression of oligodendrocyte development and differentiation in the VPA group. Pathway analysis indicated that this functional inhibition was associated with the PI3K/AKT signaling pathway. Oxytocin may promote oligodendrocyte development and differentiation by activating the PI3K/AKT pathway, thereby ameliorating social deficits. Further validation by transmission electron microscopy and qPCR confirmed that oxytocin treatment improved myelination deficits in the ASD rat model. CONCLUSIONS: Our findings demonstrate that oxytocin significantly improve social interaction deficits in the VPA-induced autism model, which may be related to its activation of the PI3K/AKT pathway to promote oligodendrocyte development and differentiation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。