Intervertebral disc degeneration (IVDD) is a significant contributor to chronic low back pain and disability worldwide, yet effective treatment options remain limited. Through integrative analysis of single-cell RNA-seq data from intervertebral discs (IVDs), we have firstly uncovered that the aberrant accumulation of R-Loops-a type of triple-stranded nucleic acid structure-can result in the cytoplasmic accumulation of double-stranded DNA (dsDNA) and activate cGAS/STING signaling and induce cellular senescence in nucleus pulposus cells (NPCs) during IVDD. Restoring the R-Loop state significantly mitigated both the activation of the cGAS/STING pathway and NPC senescence. Additionally, we identified ERCC5 as a critical regulator of the R-Loop state and cellular senescence. Thus, we developed an NPC-targeting nano-delivery platform (CTP-PEG-PAMAM) to deliver si-Ercc5 to the NP region of the IVDD. This approach aims to modulate the abnormal R-Loop state and inhibit the activation of cGAS/STING signaling in NPCs for IVDD treatment. CTP-PEG-PAMAM demonstrated excellent targeting capability towards NPCs and NP tissue, and achieved effective silencing of the Ercc5 gene without causing systemic organ complications. Both in vitro and in vivo experiments revealed that CTP-PEG-PAMAM-siERCC5 significantly inhibited cGAS/STING signaling activated by aberrant R-Loops, alleviated cellular senescence and promoting cell proliferation, thereby delayed IVDD in a puncture-induced rat model. In conclusion, the ERCC5-R-Loop-cGAS/STING axis in NPCs represents a promising therapeutic target for delaying IVDD, and the designed CTP-PEG-PAMAM/siRNA complex holds great potential for clinical application in the treatment of IVDD.
Targeted Inhibition of cGAS/STING signaling induced by aberrant R-Loops in the nucleus pulposus to alleviate cellular senescence and intervertebral disc degeneration.
靶向抑制髓核中异常 R-Loops 诱导的 cGAS/STING 信号传导,以减轻细胞衰老和椎间盘退变
阅读:18
作者:Wu Dan, Yan Chen, Han Linhui, Li Fudong, Xu Ximing, Sun Jingchuan, Cao Yong, Sun Kaiqiang, Shi Jiangang, Wang Yuan
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 14; 23(1):510 |
| doi: | 10.1186/s12951-025-03579-5 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
