Heat Shock Protein Family A Member 1A Attenuates Apoptosis and Oxidative Stress via ERK/JNK Pathway in Hyperplastic Prostate.

热休克蛋白家族 A 成员 1A 通过 ERK/JNK 通路减弱增生性前列腺中的细胞凋亡和氧化应激

阅读:21
作者:Liu Huan, Zhou Yongying, Wang Zhen, Liu Daoquan, Li Yan, Lai Huan, Qiu Jizhang, Shan Shidong, Guo Feng, Chen Ping, Guo Yuming, Zeng Guang, DiSanto Michael E, Zhang Xinhua
Benign prostatic hyperplasia (BPH) is a prevalent disorder in aging males. It is investigated whether heat shock protein family A member 1A (HSPA1A), a cytoprotective chaperone induced under stress, has been implicated in the development of BPH. RNA-sequencing and single-cell sequencing analyses revealed significant upregulation of HSPA1A in BPH compared to controls. In vitro experiments elucidated that HSPA1A was localized in prostatic epithelium and stroma, with upregulated expression in BPH tissues. Moreover, HSPA1A silencing augmented apoptosis and reactive oxygen species (ROS) accumulation, inhibiting proliferation via ERK/JNK activation, while overexpression reversed these effects in prostatic BPH-1 and WPMY-1 cells. Additionally, ERK1/2 suppression with U0126 rescued the effects of HSPA1A silencing. In vivo, testosterone-induced BPH (T-BPH) rat models treated with the HSPA1A antagonist KNK437 exhibited prostatic atrophy and molecular changes consistent with reduced HSPA1A activity. Finally, we conducted a tissue microarray (TMA) analysis of 139 BPH specimens from Zhongnan Hospital of Wuhan University, which revealed a positive correlation between HSPA1A expression and clinical parameters, including prostate volume (PV), tPSA, fPSA, and IPSS. In conclusion, our findings suggested that HSPA1A attenuated apoptosis and oxidative stress through the ERK/JNK signaling pathway, contributing to BPH pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。