Pathogenicity effects of a COL2A1 missense mutation (c.1594G>C) in cartilage development.

COL2A1 错义突变 (c.1594G>C) 对软骨发育的致病性影响

阅读:14
作者:Zhou Jingqian, Yuan Tianming
BACKGROUND: The COL2A1 gene encodes the α1 chain of type II collagen, a critical structural component in cartilage and the extracellular matrix. Mutations in this gene are associated with type II collagenopathies, including achondrogenesis type II (ACG2), a severe skeletal dysplasia characterized by perinatal lethality. This study aims to identify and characterize the molecular basis of a COL2A1 mutation in a patient presenting with ACG2 features and to elucidate the pathogenic mechanism of the mutation. METHODS: A newborn with clinical signs of ACG2 underwent whole-exome sequencing (WES) for genetic analysis. Structural modeling was performed using AlphaFold2 to assess the mutation's impact on the collagen triple-helix. Functional studies were conducted using HEK-293 and C28/I2 cells transfected with wild-type or mutant COL2A1 to evaluate collagen synthesis and secretion via immunoblotting and ELISA. RESULTS: WES identified a heterozygous missense mutation in COL2A1 gene (NM_001844.5: c.1584G>C, p.Glu532Gln). Structural modeling predicted that the mutation disrupted the stability of the triple-helix. Functional assays demonstrated increased synthesis and impaired secretion of type II collagen in cells expressing the mutant COL2A1 gene. CONCLUSIONS: The identified COL2A1 mutation (p.Glu532Gln) may lead to disrupted collagen structure and secretion, contributing to the pathogenesis of ACG2. These findings advance the understanding of COL2A1-related disorders and highlight the molecular mechanisms underlying type II collagenopathies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。