Unlocking the power of swine gut bacteria: newly isolated Blautia strain and its metabolites inhibit the replication of Salmonella Typhimurium in macrophages and alleviate DSS-induced colitis in mice.

释放猪肠道细菌的力量:新分离的布劳特氏菌菌株及其代谢物抑制巨噬细胞中鼠伤寒沙门氏菌的复制,并缓解DSS诱导的小鼠结肠炎

阅读:17
作者:Wei Jiatong, Liu Yang, Li Hua, Lu Ze, Liu Yanjiao, Zhang Yifan, Lan Cong, Wu Aimin, He Jun, Cai Jingyi, Tian Gang, Chen Daiwen, Yu Bing, Huang Zhiqing, Zheng Ping, Mao Xiangbing, Yu Jie, Luo Junqiu, Yan Hui, Tang Jiayong, Wang Huifen, Wang Quyuan, Luo Yuheng
BACKGROUND: Inflammatory bowel disease is a significant health concern for both humans and large-scale farm animals. In the quest for effective alternatives to antibiotics, next-generation probiotics (NGPs) have emerged as a promising option. The genus Blautia presents a rich source of potential NGP strains. Here we successfully isolated Blautia hominis LYH1 strain from the intestines of healthy weaned piglets and characterized its biological traits. Its anti-inflammatory activity was then assessed using macrophages, while its protective effects against colitis and gut barrier damage were validated in a DSS-induced mouse colitis model. RESULTS: B. hominis LYH1 displayed typical characteristics of an obligate anaerobe, including non-hemolytic and non-motile features, and a genome enriched with carbohydrate-active enzyme genes. It produced metabolites with antibiotic-like compounds, demonstrating antimicrobial activity against Escherichia coli. In vitro, B. hominis LYH1 effectively inhibited pathogen replication in macrophages, reducing cellular infections and alleviating inflammatory damage. In vivo, oral administration of B. hominis LYH1 or its metabolites significantly mitigated DSS-induced colitis in mice by suppressing pro-inflammatory cytokines, inhibiting T-lymphocyte activation, and enhancing short-chain fatty acid production. CONCLUSIONS: Our findings underscore B. hominis LYH1's potential as a NGP for maintaining gut health and combating intestinal inflammation. These findings offer valuable insights into the development of antibiotic alternatives and innovative strategies for preventing and treating enteritis in both agricultural and medical settings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。