INTRODUCTION: Ulcerative colitis (UC) is a chronic disease that requires pharmacological therapy to achieve remission. This study aimed to evaluate the effect of glucosamine selenium (GASe) on chronic colitis and reveal the underlying regulatory mechanisms. METHODS: We evaluated the cumulative toxicity of GASe by gavage in mice for 40 days. Dextran sulfate sodium (DSS; 2.5%) was added to drinking water to induce chronic colitis, and GASe was administered to mice with chronic DSS colitis. 16S rRNA sequencing was performed to investigate the influence of GASe on gut microbiota, followed by diversity and LDA Effect Size (LEfSe) analyses. Differentially expressed genes (DEGs) associated with chronic DSS colitis were identified based on the expression profiling from the Gene Expression Omnibus (GEO) database and were subjected to functional enrichment analysis. Next, the effects of GASe on pyroptosis and chemokine signaling pathways were studied in vitro and in vivo. RESULTS: GASe had no significant toxicity in mice, and administration of low-GASe and high-GASe increased the length of the colon, inhibited the expression of IL-12, IL-6, and TNF-α, and improved colonic tissue structure. Low-GASe improved the diversity of the gut microbiota and mainly affected the Burkholderiaceae family, Paenalcaligenes genus, and Erysipelatoclostridium genus. Low-GASe and high-GASe suppressed the pyroptosis-related proteins NLRP3, GSDMD, and caspase-1. Furthermore, we identified 114 DEGs from the GSE87466 and GSE53306 datasets and these DEGs were mainly enriched in the chemokine signaling pathway and some inflammatory pathways. Further experiments showed that administration of GASe inhibited the chemokine signaling pathway in chronic DSS colitis mice and NCM460 cells. DISCUSSION: This study reveals abnormalities in the gut microbiota, pyroptosis, and chemokine signaling pathways involved in chronic colitis and may provide GASe as an alternative supplement for chronic colitis management.
Supplementation of Glucosamine Selenium Ameliorates DSS-Induced Chronic Colitis in Mice via Affecting Gut Microbiota, Inhibiting Pyroptosis and Inactivating Chemokine Signaling Pathway.
补充葡萄糖胺硒可通过影响肠道菌群、抑制细胞焦亡和灭活趋化因子信号通路来改善DSS诱导的小鼠慢性结肠炎
阅读:5
作者:Zhao Tingting, Wen Zhiyue, Cui Li
| 期刊: | Journal of Inflammation Research | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 12; 18:3571-3588 |
| doi: | 10.2147/JIR.S486751 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
