Role and Mechanism of Mitochondrial Ribosomal Proteins in Septic Myocardial Injury.

线粒体核糖体蛋白在脓毒症心肌损伤中的作用和机制

阅读:7
作者:Wu Liuli, Huang Junchao, Jia Xiongfei, Mao Xiaoqin
OBJECTIVE: To investigate the role of mitochondrial ribosomal proteins (MRPs) in the pathogenesis and progression of septic myocardial injury. Additionally, we aim to propose new technical strategies and experimental foundations for the prevention and treatment of septic myocardial injury. METHODS: Animal and cell models of septic myocardial injury were established. Aberrantly expressed MRPs were screened using transcriptome sequencing, and their expression was verified by RT-qPCR and Western blot. Subsequently, overexpressed and knockdown cell models of myocardial injury were constructed. The effects on CO I, PGC-1α, ATP content, ROS fluorescence intensity, mitochondrial membrane potential, and GSDMD were assessed, along with changes in caspase-4 and IL-1β expression levels. RESULTS: Transcriptome sequencing revealed a reduction in MRPs expression in mice with septic myocardial injury. Both RT-qPCR and Western blot analysis confirmed the decreased expression of MRPs in animal and cell models of septic myocardial injury. Furthermore, overexpression of both MRPS16 and MRPL47 mitigated the decrease in CO I and PGC-1α levels induced by septic myocardial injury. Additionally, overexpression of MRPS16 and MRPL47 alleviated the elevated levels of IL-1β, caspase-4, and GSDMD caused by septic myocardial injury. CONCLUSION: The findings suggest that both MRPS16 and MRPL47 can mitigate mitochondrial injury by attenuating mitochondrial biosynthesis dysfunction, energy metabolism disorders, and Ca(2+) disturbances caused by septic myocardial injury. This ultimately reduces cellular damage and alleviates septic myocardial injury.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。