Gallic acid prevents obesity in mice on a high-fat diet via the gut microbiota-adipose tissue axis.

没食子酸通过肠道菌群-脂肪组织轴防止高脂饮食小鼠肥胖

阅读:5
作者:Jian Shiyan, Jian Xiaoying, Ye Lan, Yang Kang, Zhang Limeng, Xie Yixuan, Deng Jinping, Yin Yulong, Deng Baichuan
Obesity is closely related to the gut microbiota, and gallic acid (GA) has anti-obesity properties, but its relationship with the gut microbiota is unclear. The aim of this study was to investigate the role of gut microbiota in the anti-obesity mechanism of GA by fecal microbiota transplantation (FMT). Here, we found that high-fat diet (HFD) promoted lipid deposition and gut microbiota dysbiosis in mice, whereas GA slowed down lipid deposition and restored gut microbiota dysbiosis and its functional profile, as evidenced by the reduction of the obesity-causing bacterium Desulfovibrio and the enrichment of the beneficial bacterium Lachnospiraceae_NK4A136_group, Clostridiales_unclassified, Oscillospira and Adlercreutzia. These gut microbiota and metabolites produced positive feedback effects on body weight, glucose tolerance, insulin resistance, as well as glycemic and lipid parameters. Mechanistically, GA significantly enhanced lipid and energy metabolism in obese mice by promoting the expression of uncoupling protein 1 (UCP1), adiponectin, and adiponectin receptor 2 in white adipose tissue of the epididymal white adipose tissue, as well as promoting thermogenesis in interscapular brown adipose tissue by stimulating UCP1 expression. Interestingly, GA failed to alleviate lipid accumulation in HFD of antibiotic-treated mice. In contrast, after FMT treatment, the fecal microbiota of GA-treated donor mice significantly alleviated lipid metabolism in HFD-fed mice, which is mechanistically consistent with direct addition of GA. Collectively, GA can alleviate HFD-induced obesity by modulating the gut microbiota, and the specific mechanism may be through the gut microbiota-adipose tissue axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。