This study was designed to identify immune-related biomarkers associated with allergic rhinitis (AR) and construct a robust a diagnostic model. Two datasets (GSE5010 and GSE50223) were downloaded from the NCBI GEO database, containing 38 and 84 blood CD4â+âT cell samples, respectively. To eliminate batch effects, the surrogate variable analysis (sva) R package (version 3.38.0) was employed, enabling the integration of data for subsequent analysis. Immune cell infiltration profiles were assessed using the Gene Set Variation Analysis (GSVA) R package (version 1.36.3). A gene co-expression network was constructed via the Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm to identify disease-related modules. Differentially expressed genes (DEGs) were identified using the linear models for microarray data (limma) R package (version 3.34.7), followed by functional enrichment analysis using DAVID. Protein-protein interaction (PPI) networks were constructed based on the STRING database to highlight key genes. A diagnostic model was subsequently developed utilizing the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm and Support Vector Machine (SVM) method, with its discriminative capacity assessed via Receiver Operating Characteristic (ROC) curves. A total of twenty-eight immune cell types were analyzed, revealing significant differences in eight types between the AR and control groups. Through WGCNA, three disease-related modules comprising 4278 candidate genes were identified. Differential expression analysis identified 326 significant DEGs, of which 257 overlapped with WGCNA-selected genes. These genes exhibited significant enrichment in immune-related pathways, including "cytokine-cytokine receptor interaction" and "chemokine signaling pathway." Gene Set Enrichment Analysis (GSEA) further uncovered 12 KEGG pathways significantly associated with disease risk scores. Drug screening identified 24 small molecule drugs related to key genes. A diagnostic model incorporating five genes (RFC4, LYN, IL3, TNFRSF1B, and RBBP7) was constructed, demonstrating diagnostic efficiencies of 0.843 and 0.739 in the training and validation sets, respectively. An AR mouse model was successfully established, and the expression levels of relevant genes were validated through RT-qPCR experiments. The five-gene diagnostic model established in this study exhibits strong predictive ability in distinguishing AR patients from healthy controls, with potential clinical applications in diagnosing AR and advancing novel diagnostic and therapeutic strategies.
Identification of immune-related biomarkers associated with allergic rhinitis and development of a sample diagnostic model.
识别与过敏性鼻炎相关的免疫相关生物标志物并建立样本诊断模型
阅读:5
作者:Wang MaoMeng, Wang Shuang, Lin XinHua, Lv XiaoJing, Liu XueXia, Zhang Hua
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Sep 3; 20(9):e0329549 |
| doi: | 10.1371/journal.pone.0329549 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
