FKBP51 inhibition ameliorates neurodegeneration and motor dysfunction in the neuromelanin-SNCA mouse model of Parkinson's disease.

FKBP51 抑制可改善帕金森病神经黑色素-SNCA 小鼠模型中的神经退行性变和运动功能障碍

阅读:3
作者:Garcia-Gomara Marta, Legarra-Marcos Naroa, Serena Maria, Rojas-de-Miguel Elvira, Espelosin Maria, Marcilla Irene, Perez-Mediavilla Alberto, Luquin Maria Rosario, Lanciego Jose Luis, Burrell Maria Angeles, Cuadrado-Tejedor Mar, Garcia-Osta Ana
Parkinson's disease (PD) is characterized by the loss of neuromelanin (NM)-containing dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta (SNpc) and the buildup of α-synuclein (α-syn) inclusions, called Lewy bodies. To investigate the roles of NM and α-syn in DA neuron degeneration, we modeled PD by inducing NM accumulation in a humanized α-syn mouse model (Snca(-); PAC-Tg(SNCA(WT))) via the expression of human tyrosinase in the SN. We found that this mouse strain develops naturally progressive motor dysfunction and dopaminergic neuronal loss in the SN with aging. Upon tyrosinase injection, NM-containing neurons developed p62 and ubiquitin inclusions. Furthermore, the upregulation of genes associated with microglial activation in the midbrain indicated a role of pro-inflammatory factors in neurodegeneration. Midbrain RNA sequencing confirmed the microglial response and identified Fkbp5 as one of the more dysregulated genes. Next, we showed that FKBP51(51 kDa) was significantly upregulated with aging and in PD human brains. Pharmacological treatment with SAFit2, a potent FKBP51 inhibitor, led to a reduction in ubiquitin-positive inclusions, prevention of neurodegeneration in the SNpc, and improved motor function in NM-SNCAWT mice. These results highlight the critical role of FKBP51 in PD and propose SAFit2 as a promising therapeutic candidate for reducing neurodegeneration in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。