UFMylation is a Ubiquitin-like post-translational modification involved in myriad of cellular processes. Enzymes involved in this pathway, including ligases and UFM1-specific proteases, are essential for development and homeostasis. Our previous transcriptomic analyses identified an enrichment of Ufsp1 at the neuromuscular junction of skeletal muscle cells. Ufsp1, one of the two UFM1 proteases, had been considered a pseudogene due to truncation of its catalytic domain in several species, including humans. However, recent findings revealed that Ufsp1 is translated from a non-canonical start codon in humans, yielding a catalytically active enzyme. This discovery has revived interest in studying Ufsp1's role in vivo. We generated two mutant mouse models, one with a point mutation abolishing catalytic activity and another with complete knockout of the gene. Unlike other UFMylation pathway enzymes, both Ufsp1 mutants were born in normal ratios and did not exhibit gross phenotypic abnormalities. Despite the enrichment of Ufsp1 at neuromuscular junctions, only mild structural alterations of this synapse were detected, which did not impact overall muscle function. Our findings indicate that Ufsp1 is dispensable for normal development and homeostasis in mice, but further exploration of its function is needed in pathological conditions.
Loss of Ufsp1 does not cause major changes at the neuromuscular junction.
Ufsp1 的缺失不会引起神经肌肉接头的重大变化
阅读:5
作者:Calvo Cristofer, Smith Coalesco, Song Taejeong, Montecino-Morales Fabian, Sadayappan Sakthivel, Millay Douglas P, Kim Minchul
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 1; 20(8):e0328690 |
| doi: | 10.1371/journal.pone.0328690 | 靶点: | SP1 |
| 研究方向: | 神经科学 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
