Epstein-Barr virus BALF0/1 subverts the Caveolin and ERAD pathways to target B cell receptor complexes for degradation.

Epstein-Barr 病毒 BALF0/1 破坏 Caveolin 和 ERAD 途径,以 B 细胞受体复合物为靶点进行降解

阅读:5
作者:Yiu Stephanie Pei Tung, Liao Yifei, Yan Jinjie, Weekes Michael P, Gewurz Benjamin E
Epstein-Barr virus (EBV) establishes persistent infection, causes infectious mononucleosis, is a major trigger for multiple sclerosis and contributes to multiple cancers. Yet, knowledge remains incomplete about how the virus remodels host B cells to support lytic replication. We previously identified that EBV lytic replication results in selective depletion of plasma membrane (PM) B cell receptor (BCR) complexes, composed of immunoglobulin and the CD79A and CD79B signaling chains. Here, we used proteomic and biochemical approaches to identify that the EBV early lytic protein BALF0/1 is responsible for EBV lytic cycle BCR degradation. Mechanistically, an immunoglobulin heavy chain (HC) cytoplasmic tail KVK motif was required for ubiquitin-mediated BCR degradation, while CD79A and CD79B were dispensable. BALF0/1 subverted caveolin-mediated endocytosis to internalize PM BCR complexes and to deliver them to the endoplasmic reticulum. BALF0/1 stimulated immunoglobulin HC cytoplasmic tail ubiquitination, which together with the ATPase valosin-containing protein/p97 drove ER-associated degradation of BCR complexes by cytoplasmic proteasomes. BALF0/1 knockout reduced the viral load of secreted EBV particles from B cells that expressed a monoclonal antibody against EBV glycoprotein 350 but not a control anti-influenza hemagglutinin antibody and increased viral particle immunoglobulin incorporation. Consistent with downmodulation of PM BCR, BALF0/1 overexpression reduced viability of a diffuse large B cell lymphoma cell line whose survival is dependent upon BCR signaling. Collectively, our results suggest that EBV BALF0/1 downmodulates immunoglobulin upon lytic reactivation to block BCR signaling and support virion release, but await the development of suitable models to test its roles in EBV reactivation in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。