BACKGROUND: The budding yeast Komagataella phaffii (Pichia pastoris) is widely employed to secrete proteins of academic and industrial interest. For secretory proteins, signal peptides are the sorting signal to direct proteins from cytosol to extracellular matrix, and their secretion efficiency directly impacts the yields of the targeted proteins in fermentation broth. Although the α-mating factor (MF) secretion signal from S. cerevisiae, the most common and widely used signal sequence for protein secretion, works in most cases, limitation exists as some proteins cannot be secreted efficiently. As the optimal choice of secretion signals is often protein specific, more secretion signals need to be developed to augment protein expression levels in K. phaffii. RESULTS: In this study, the secretion efficiency of 40 α-MF secretion signals from various yeast species and 32 endogenous signal peptides from K. phaffii were investigated using enhanced green fluorescent protein (EGFP) as the model protein. All of the evaluated α-MF secretion signals successfully directed EGFP secretion except for the secretion signals of the yeast D. hansenii CBS767 and H. opuntiae. The secretion efficiency of α-MF secretion signal from Wickerhamomyces ciferrii was higher than that from S. cerevisiae. 24 out of 32 endogenous signal peptides successfully mediated EGFP secretion. The signal peptides of chr3_1145 and FragB_0048 had similar efficiency to S. cerevisiae α-MF secretion signal for EGFP secretion and expression. CONCLUSIONS: The screened α-MF secretion signals and endogenous signal peptides in this study confer an abundance of signal peptide selection for efficient secretion and expression of heterologous proteins in K. phaffii.
The α-mating factor secretion signals and endogenous signal peptides for recombinant protein secretion in Komagataella phaffii.
α-交配因子分泌信号和重组蛋白分泌的内源信号肽在 Komagataella phaffii 中的作用
阅读:5
作者:Zou Chenwei, Lu Lingfang, Wang Shengyan, Zhang Chenshan, Chen Xuequn, Lin Yao, Huang Yide
| 期刊: | Biotechnology for Biofuels and Bioproducts | 影响因子: | 4.600 |
| 时间: | 2022 | 起止号: | 2022 Dec 16; 15(1):140 |
| doi: | 10.1186/s13068-022-02243-6 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
