Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: INSIG1.

单细胞测序和机器学习整合用于识别银屑病候选生物标志物:INSIG1

阅读:4
作者:Zhou Xiangnan, Ning Jingyuan, Cai Rui, Liu Jiayi, Yang Haoyu, Bai Yanping
BACKGROUND: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research. METHODS: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis. Bulk transcriptome and scRNA-seq data were integrated to identify differentially expressed genes (DEGs). Machine learning was employed to screen candidate genes. Correlation analysis was used to predict the interactions between cells expressing insulin-induced gene 1 (INSIG1) and other immune cells. Finally, drug docking was performed on INSIG1, and the expression levels of INSIG1 in psoriasis were verified through clinical and in vivo experiments, and further in vivo experiments established the efficacy of tetrandrine in the treatment of psoriasis. RESULTS: T cells were initially categorized into seven states, with differentially expressed genes in T cells (TDEGs) identified and their functions and signaling pathways. INSIG1 emerged as a characteristic gene for psoriasis and was found to be downregulated in psoriasis and potentially negatively associated with T cells, influencing psoriasis fatty acid metabolism, as inferred from enrichment and immunoinfiltration analyses. In the cellular communication network, cells expressing INSIG1 exhibited close interactions with other immune cells through multiple signaling channels. Furthermore, drug sensitivity showed that tetrandrine stably binds to INSIG1, could be a potential therapeutic agent for psoriasis. CONCLUSION: INSIG1 emerges as a specific candidate gene potentially regulating the fatty acid metabolism of patients with psoriasis. In addition, tetrandrine shows promise as a potential treatment for the condition.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。