Molecular profiling of neuronal extracellular vesicles reveals brain tissue specific signals.

神经元细胞外囊泡的分子谱分析揭示了脑组织特异性信号

阅读:3
作者:Kalia Vrinda, Jackson Gabriela, Dominguez Regina J, Pinto-Pacheco Brismar, Bloomquist Tessa, Furnari Julia, Banu Matei, Volpert Olga, Manz Katherine E, Walker Douglas I, Pennell Kurt D, Canoll Peter D, Bruce Jeffrey N, Eitan Erez, Wu Haotian, Baccarelli Andrea A
Extracellular vesicles (EVs) released by neurons (nEVs) provide an opportunity to measure biomarkers from the brain circulating in the periphery. No study yet has directly compared molecular cargo in brain tissue to nEVs found in circulation in humans. We compared the levels microRNAs and environmental chemicals because microRNAs are one of the most studied nEV cargoes and offer great potential as biomarkers and environmental chemical load in nEVs is understudied and could reveal levels of chemicals in the brain. To do so, we leveraged matched sets of brain tissue and serum, and isolated serum total EVs and serum nEVs. We also generated and compared metabolomic profiles in a different set of matched serum, serum total EVs, and serum nEVs since metabolite cargo in nEVs is also understudied but could offer potential biomarkers. Highly expressed brain tissue miRNAs showed stronger correlations with nEVs than serum or total EVs. We detected several environmental chemical pollutant classes in nEVs. The chemical pollutant concentrations in nEVs were more strongly correlated with brain tissue levels than those observed between brain tissue and serum or total EVs. We also detected several endogenous metabolite classes in nEVs. Compared to serum and total EVs, there was enrichment of metabolites with known signaling roles, such as bile acids, oleic acid, phosphatidylserine, and isoprenoids. We provide evidence that nEV cargo is closely correlated to brain tissue content, further supporting their utility as a brain liquid biopsy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。