Demyelination Produces a Shift in the Population of Cortical Neurons That Synapse with Callosal Oligodendrocyte Progenitor Cells.

脱髓鞘导致与胼胝体少突胶质细胞祖细胞形成突触的皮层神经元群体发生变化

阅读:4
作者:Summers Benjamin S, Blizzard Catherine A, Ricci Raphael R, Pitman Kimberley A, Dempsey Bowen, McMullan Simon, Sutherland Brad A, Young Kaylene M, Cullen Carlie L
Oligodendrocyte progenitor cells (OPCs) receive synaptic input from a diverse range of neurons in the developing and adult brain. Understanding whether the neuronal populations that synapse with OPCs in the healthy brain is altered by demyelination and/or remyelination may support the advancement of neuroprotective or myelin repair strategies being developed for demyelinating diseases such as multiple sclerosis. To explore this possibility, we employed cre-lox transgenic technology to facilitate the infection of OPCs by a modified rabies virus, enabling the retrograde monosynaptic tracing of neuron→OPC connectivity. In the healthy adult mouse, OPCs in the corpus callosum primarily received synaptic input from ipsilateral cortical neurons. Of the cortical neurons, ∼50% were layer V pyramidal cells. Cuprizone demyelination reduced the total number of labeled neurons. However, the frequency/kinetics of mini-excitatory postsynaptic currents recorded from OPCs appeared preserved. Of particular interest, demyelination increased the number of labeled layer II/III pyramidal neurons and also increased at the expense of layer V pyramidal neurons, a change that was largely ameliorated by remyelination. These data suggest that in the healthy adult mouse brain, callosal OPCs primarily receive synaptic input from cortical layer V pyramidal neurons. However, callosal demyelination is associated with a population switch and OPCs equally synapse with layer II/III and V pyramidal neurons to synapse with OPCs, until myelin is restored.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。