Embracing enzyme promiscuity with activity-based compressed biosensing.

利用基于活性的压缩生物传感技术来应对酶的混杂性

阅读:6
作者:Holt Brandon Alexander, Lim Hong Seo, Sivakumar Anirudh, Phuengkham Hathaichanok, Su Melanie, Tuttle McKenzie, Xu Yilin, Liakakos Haley, Qiu Peng, Kwong Gabriel A
The development of protease-activatable drugs and diagnostics requires identifying substrates specific to individual proteases. However, this process becomes increasingly difficult as the number of target proteases increases because most substrates are promiscuously cleaved by multiple proteases. We introduce a method-substrate libraries for compressed sensing of enzymes (SLICE)-for selecting libraries of promiscuous substrates that classify protease mixtures (1) without deconvolution of compressed signals and (2) without highly specific substrates. SLICE ranks substrate libraries using a compression score (C), which quantifies substrate orthogonality and protease coverage. This metric is predictive of classification accuracy across 140 in silico (Pearson r = 0.71) and 55 in vitro libraries (r = 0.55). Using SLICE, we select a two-substrate library to classify 28 samples containing 11 enzymes in plasma (area under the receiver operating characteristic curve [AUROC] = 0.93). We envision that SLICE will enable the selection of libraries that capture information from hundreds of enzymes using fewer substrates for applications like activity-based sensors for imaging and diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。