'Preconditioning' with low dose lipopolysaccharide aggravates the organ injury / dysfunction caused by hemorrhagic shock in rats.

低剂量脂多糖的“预处理”会加重大鼠出血性休克引起的器官损伤/功能障碍

阅读:6
作者:Sordi Regina, Chiazza Fausto, Patel Nimesh S A, Doyle Rachel A, Collino Massimo, Thiemermann Christoph
METHODS: Male rats were 'pretreated' with phosphate-buffered saline (PBS; i.p.) or LPS (1 mg/kg; i.p.) 24 h prior to HS. Mean arterial pressure (MAP) was maintained at 30 ± 2 mmHg for 90 min or until 25% of the shed blood had to be re-injected to sustain MAP. This was followed by resuscitation with the remaining shed blood. Four hours after resuscitation, parameters of organ dysfunction and systemic inflammation were assessed. RESULTS: HS resulted in renal dysfunction, and liver and muscular injury. At a first glance, LPS preconditioning attenuated organ dysfunction. However, we discovered that HS-rats that had been preconditioned with LPS (a) were not able to sustain a MAP at 30 mmHg for more than 50 min and (b) the volume of blood withdrawn in these animals was significantly less than in the PBS-control group. This effect was associated with an enhanced formation of the nitric oxide (NO) derived from inducible NO synthase (iNOS). Thus, a further control group in which all animals were resuscitated after 50 min of hemorrhage was performed. Then, LPS preconditioning aggravated both circulatory failure and organ dysfunction. Most notably, HS-rats pretreated with LPS exhibited a dramatic increase in NF-κB activation and pro-inflammatory cytokines. CONCLUSION: In conclusion, LPS preconditioning predisposed animals to an earlier vascular decompensation, which may be mediated by an excess of NO production secondary to induction of iNOS and activation of NF-κB. Moreover, LPS preconditioning increased the formation of pro-inflammatory cytokines, which is likely to have contributed to the observed aggravation of organ injury/dysfunction caused by HS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。