The Immune Regulation of Melanin From Gallus gallus domesticus Brisson Against Cyclophosphamide-Induced Immunosuppression.

鸡黑色素对环磷酰胺诱导的免疫抑制的免疫调节作用

阅读:6
作者:Liu Jiao, Gao Haiyun, Liu Tianrui, Zhang Tian, Nan Tiegui, Li Hongmei, Li Hiu, Li Jianliang, Yuan Yuan
Black-bone silky fowl (Gallus gallus domesticus Brisson), medicinal food homology, utilizes to enhance human immunity. However, it remains unclear whether Black-bone silky fowl melanin (BSFM), one of its bioactive components, could affect immune function. The purpose of this study is to examine the immunoregulatory effect and the underlying mechanism of BSFM in the cyclophosphamide-induced immunosuppressive mice model. The findings revealed that BSFM could significantly increase white blood cells (WBC) in peripheral blood; upregulate the expression of IL-4, TNF-α, and M-CSF in the plasma; and reduce tissue damage. Mechanistically, proteomics has revealed that BSFM therapy substantially affected the quantity of 29 proteins (Mtatp6, Cst3, Pglyrp1, Igkc, and other targets), which mostly participate in the phosphatidylcholine catabolic process, positive regulation of type IIa hypersensitivity, lipid catabolic process, and neutrophil chemotaxis. Metabolomics indicated that BSFM reduced the levels of Octanoylglucuronide, Gly-Gly, and N-alpha-acetyl-ornithine and modulated arginine biosynthesis. Furthermore, BSFM treatment modified the composition of gut microbiota and increased the relative abundance of Prevotella, S24-7, Olsenella, Lactococcus, hgcl-clade, Parasutterella, and Acetobacter. A significant correlation modified the composition of gut microbiota among inflammation-associated parameters, gut microbiota, and various metabolites (DMs) through Pearson correlation analysis. These findings suggest that BSFM holds promise in enhancing the human immune system and may serve as a complementary therapy in conventional chemotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。