A human iPSC-Derived myelination model for investigating fetal brain injuries.

利用人类iPSC衍生的髓鞘形成模型研究胎儿脑损伤

阅读:24
作者:Hiraiwa Tsuyoshi, Yoshii Shoko, Kawada Jiro, Sugawara Tohru, Kawasaki Tomoyuki, Shibata Shinsuke, Shindo Tomoko, Fujimori Keiya, Umezawa Akihiro, Akutsu Hidenori
Cerebral white matter injuries, such as periventricular leukomalacia, are major contributors to neurodevelopmental impairments in preterm infants. Despite the clinical significance of these conditions, human-relevant models for studying fetal brain development and injury mechanisms remain limited. This study introduces a human iPSC-derived myelination model developed using a microfluidic device. The platform combines spinal cord-patterned neuronal and oligodendrocyte spheroids to recapitulate axon-glia interactions and myelination processes in vitro. The model successfully achieved axonal fascicle formation and compact myelin deposition, as validated by immunostaining and transmission electron microscopy. Functional calcium imaging confirmed neuronal activity within the system, underscoring its physiological relevance. While myelination efficiency was partial, with some axons remaining unmyelinated under the current conditions, this model represents a significant advancement in human myelin biology, offering a foundation for investigating fetal and perinatal brain injuries and related pathologies. Future refinements, such as improved myelination coverage and incorporating additional CNS cell types, will enhance its utility for studying disease mechanisms and enabling high-throughput drug screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。